Phase Transitions in Silver Gold Chalcogenides

T. J. M. SMIT, E. VENEMA, J. WIERSMA, AND G. A. WIEGERS

Laboratorium voor Anorganische Chemie, Rijksuniversiteit, Groningen, Netherlands

Received March 7, 1970

The phase transitions of the compounds Ag₃AuX₂ (X = S, Se, Te) and the compound AgAuS were investigated by X-ray diffraction methods and differential thermal analysis. Ag₃AuSe₂ and Ag₃AuTe₂ are cubic body-centered ($a \approx 5$ Å, Z = 1) above 270 and 320°C, respectively. Ag₃AuS₂ and AgAuS are cubic primitive ($a \approx 5$ Å) above 185 and 307°C, respectively.

The heats of transition are: Ag₃AuTe₂ 2.9 kcal/mole, Ag₃AuSe₂ 6.7 kcal/mole, Ag₃AuS₂ 4.0 kcal/mole, and AgAuS 3.5 kcal/mole.

The low-temperature modification of AgAuS (stable below 307°C) is monoclinic: a = 8.38, b = 13.42,

c = 9.09 Å; $\beta = 111.4^{\circ}$; the possible space groups are I2, Im, and I2/m. There are 16 units AgAuS in the cell.

Introduction

The silver chalcogenides $Ag_2X(X = S, Se, Te)$ have been the subject of a large number of investigations. The interest stems from the remarkable electrical properties and from the fact that the compounds (except Ag₂Se) possesses two high-temperature phases, characterized by either a bodycentered or a face-centered packing of anions. In both kinds of anion packings the cations are statistically distributed over several types of interstitial sites (1). The body-centered cubic cell ($a \approx 5$ Å) contains 2 Ag_2X ; the face-centered cubic cell $(a \approx 6.3 \text{ Å}) 4 \text{ Ag}_2 \text{X}$. In Table I the allotropic forms and the temperatures of the phase transitions are summarized. For the description of polymorphs the nomenclature utilized by Kracek (2) will be followed. The crystalline phase that can exist in equilibrium with the liquid or disproportion products will be assigned the roman numeral I; those phases stable at successively lower temperatures will be assigned numerals of increasing value.

There is confusion in the literature about the transitions of Ag₂Se. Tavernier et al. (3) found an endothermic heat effect at 425°C which was ascribed to a bcc \rightarrow fcc transition. Other investigations do not confirm this. We studied the thermal behaviour of Ag₂Se by high-temperature X-ray methods and differential thermal analysis; no bcc \rightarrow fcc transition was observed.

The transition temperatures, in particular those of the II \rightarrow I transitions depend on the stoichiometry; Ag₂S in equilibrium with Ag transforms from bcc to fcc at 622°C, in equilibrium with S at 586°C. For Ag₂Te the II-I transition occurs (4) at 689°C in the presence of Ag and 802°C in the presence of Te.

As far as we are aware, the only known crystalline compound Au_2X is Au_2S . It has been claimed (5) to have a Cu_2O -type structure.

Several silver gold chalcogenides $(Ag, Au)_2 X$ are

Crystal Symmetry and Transition Temperatures of Silver Chalcogenides Ag_2X

	III	$\Pi \to \Pi$	II	$II \rightarrow I$	I
Ag ₂ S	Monoclinic	176.3°C	bcc	586°C	fcc
Ag₂Se			Orthorhombic	139°C	bcc
Ag ₂ Te		145°C	fcc	802°C	bcc

known: Ag₃AuS₂, AgAuS, Ag₃AuSe₂, Ag₃AuTe₂, and Ag₁₁AuTe₆. The compounds Ag₃AuX₂ are formed (6) by interaction between Ag₂X precipitates and thiogold (I) complexes, for instance dithiosulfatoaurate (I) ions. Only Ag₃AuS₂ reacts with an excess of the thiogold (I) complex yielding successively crystalline AgAuS and amorphous Au₂S. Ag₃AuS₂ (7) and Ag₃AuTe₂ (8) could also be synthesized from the elements. Ag₃AuTe₂ is known as the mineral petzite.

The ternary system Ag-Au-Te was investigated by Cabri (9). He found three polymorphs of Ag₃AuTe₂. Ag₃AuTe₂ III is cubic, a = 10.65 Å; the powder pattern of Ag₃AuTe₂ II (stable between 210 and 319°C) was not indexed. Ag₃AuTe₂ I is cubic body-centered, a = 5.20 Å at 363°C. The phase diagram indicates a continuous solid solution between Ag₃AuTe₂ I and Ag₂Te I. A compound with a lower gold content, Ag₁₁AuTe₆, is formed at about 50°C from Ag₃AuTe₂ III and Ag₂Te III. At 415°C this compound disproportionates.

Tavernier et al. (3) determined the temperatures of the transitions of silver gold chalcogenides Ag_3AuX_2 by means of differential thermal analysis. The temperatures reported for Ag_3AuTe_2 agree with those given by Cabri.

The crystal structures of the room-temperature modifications of Ag_3AuX_2 have been reported (10-12). The anion packing is approximately body-centered; gold is coordinated by two, silver by four chalcogen atoms. Ag_3AuS_2 was described to be cubic, a = 9.72 Å space group $P4_13$ by Messien et al. (12). We confirmed, however, the tetragonal cell given by Graf (7).

We report the results of an X-ray study of the phase transitions of Ag_3AuX_2 and of AgAuS. The results of Cabri (9) for Ag_3AuTe_2 were confirmed. The high-temperature forms of Ag_3AuTe_2 and

 Ag_3AuSe_2 are closely similar to the cubic bodycentered modifications of Ag_2Se and Ag_2Te . The high-temperature modifications of AgAuS and Ag_3AuS_2 are cubic primitive with two units of AgAuS and one unit of Ag_3AuS_2 per cell. A structure determination of these phases is in progress. Table II summarizes data for all phases Ag_3AuX_2 and AgAuS.

In addition, we determined the heats of transition of these compounds by means of differential thermal analysis. The transition temperatures agreed well with those reported by Tavernier et al. (3).

Experimental

Ag₃AuTe₂, Ag₃AuSe₂, Ag₃AuS₂, and AgAuS were prepared by heating mixtures of the elements in evacuated quartz tubes; the samples were heated at 500°C for four days and slowly cooled to room temperature.

The samples were studied by differential thermal analysis with an apparatus constructed by Drs. J. C. Wildervanck and Drs. J. Koopstra. The ΔT signal (from a Pallador I thermocouple) was amplified about 10^4 times and plotted versus T (from a chromel-alumel thermocouple) by an X-Y recorder (Hewlett-Packard, 7001 AM). The sensitivity is about 0.16° C/cm. The heating rate was 10° C/min. The samples were sealed in evacuated glass (pyrex) holders with a kick in the thin-walled bottom in which the thermocouple joint is placed. The heat effect was determined by comparing the area of the DTA peaks with those of transitions with known heat effect. On calibrating with metals (melting of Sn and Bi) an effect of 0.71 mcal was found to correspond to 1 mm² on the X-Y recorder. The heat of transition of Ag₂S (177°C) was found to be 1.2 kcal/mole, that of Ag₂Se (133°C) 2.1 kcal/mole.

Compound	Room Temperature Modification	Transition Temp. (°C) ^a	High-Temp. Modification	References ^b
Ag ₃ AuTe ₂ Ag ₃ AuSe ₂ Ag ₃ AuS ₂ AgAuS	Cubic, $a = 10.38$ Å, $Z = 8$ Cubic, $a = 9.95$ Å, $Z = 8$ Tetragonal, $a = 9.75$, $c = 9.85$ Å, $Z = 8$ Monoclinic, $a = 8.38$, $b = 13.42$ $c = 9.09$ Å $B = 111.4^{\circ}$ $Z = 16$	220(189), 320(290) 270(251) 185(158) 307(300)	bcc, $a = 5.26 \text{ Å}(385^{\circ}\text{C})$ bcc, $a = 5.06 \text{ Å}(290^{\circ}\text{C})$ cubic, $a = 4.94 \text{ Å}(190^{\circ}\text{C})$ cubic, $a = 5.10 \text{ Å}(310^{\circ}\text{C})$	(9, 10) (11) (7, 12)

TABLE II

Crystal Data and Transition Temperatures of Ag_3AuX_2 and AgAuS

" Transition temperatures (except AgAuS) taken from Tavernier et al. (3). In parentheses the temperatures observed on cooling.

^b The references refer to the crystal structures of the room-temperature modifications.

The literature (13) values are 1.4 ± 0.4 kcal/mole and 1.6 ± 0.4 kcal/mole, respectively. For Ag₂Se a somewhat larger value, 2.2 kcal/mole, has been found by Banus (14). The accuracy of our values is estimated to be about 20%.

X-Ray diagrams at room temperature were taken with a Philips diffractometer and a Nonius Guinierde Wolff camera. High-temperature powder patterns were taken with a Guinier-Lenné camera (Nonius). The temperature was varied continuously with heating and cooling rates of 10°C/hr. In most cases, the samples were sealed in very thin quartz capillaries to prevent oxidation and loss of chalcogen vapour.

Ag₃AuTe₂

Our samples of Ag₃AuTe₂ always contained some unreacted gold and Ag₂Te. A high-temperature Guinier photograph, made with the sample in air of 10^{-2} Torr pressure, showed phase transitions at about 200 and 320°C. The Guinier pattern of the intermediate-temperature phase (stable between 200 and 320°C) is complicated and could not be indexed. Above 320°C Ag₃AuTe₂ is cubic body-centered, with a = 5.26 Å at 385°C. The reflections observed are given in Table III. The results of Cabri (9) were also completely confirmed.

The heat of transition at 220°C is 2.9 kcal/mole; a small heat effect was observed at 320°C.

Ag₃AuSe₂

The transition temperature (DTA) is 267°C [Tavernier et al. (3) 270°C]. At that temperature Ag₃AuSe₂ becomes cubic body-centered, a = 5.06 Å at 290°C. In Table III the Guinier pattern at 290°C is given. The high-temperature X-ray photograph

TABLE III

GUINIER PATTERNS OF Ag_3AuTe_2 (385°), Ag_3AuSe_2 (290°C), and $Ag_2Se II$ (140°C)

did not show further phase transitions; at about 730° C the compound melts.

The heat of transition at 267°C is 6.7 kcal/mole.

Ag_3AuS_2

Above 183° C (Tavernier et al. 185° C) Ag₃AuS₂ is cubic primitive with a = 4.94 Å at 190° C (and not cubic body-centered such as Ag₂S II). The Guinier pattern is given in Table IV.

The heat of transition at 183° C is 4.0 kcal/mole. In sealed vessels (DTA ampoules) the phase transition is reversible; on cooling from about 450° C the phase transition occurred at 155° C; no peaks from Ag₂S were observed. A high-temperature X-ray photograph made with the sample mounted on teflon tape, the camera being kept at a pressure of 10^{-2} Torr. showed rapid decomposition above the transition temperature:

$$2Ag_{3}AuS_{2} \rightarrow 3Ag_{2}S + 2Au + \frac{1}{2}S_{2}^{\uparrow}$$

At 280°C only Ag₂S II and Au were present.

AgAuS

The powder pattern of AgAuS, synthesized from the elements agreed with that published by Tavernier (6). The cell dimensions of the roomtemperature modification were found by singlecrystal methods. AgAuS II is monoclinic; at 20°C a = 8.38, b = 13.42, c = 9.09 Å, $\beta = 111.4^{\circ}$. The cell is body-centered. The possible space groups are I2, Im, and I2/m. The cell volume is 963 Å³; that of Ag₂S III ($a = 4.229, b = 6.931, c = 7.862, \beta =$ 99.61°, space group $P2_1/n, Z = 4$) (15) is 227.2 Å³. We may assume that there are 16 units AgAuS in the cell.

Above 307° C AgAuS is cubic primitive, a = 5.01Å at 310° C. The powder pattern is given in Table IV. At about 730° C the compound melts. AgAuS has, just like Ag₃AuS₂, a high-sulfur vapour pressure at elevated temperatures. It decomposes readily

TABLE IV

GUINIER PATTERNS OF Ag₃AuS₂ (190°)C and AgAuS (310°C)

	Ag₃A	Ag ₃ AuTe ₂		Ag ₃ AuSe ₂		Se	(.	(190) E AND AGAUG (510 C)				
hkl	d(Å)	Int	d(Å)	Int	$d(\mathbf{\mathring{A}})$	Int		AgA	Aus	Ag ₃ A	uS ₂	
110	3.72	st	3.57	m ⁻	3.53	vw	hkl	d(Å)	Int	d(Å)	Int	
200	2.63	st	2.53	vw	2.50	vst	110			3.50	vw	
211	2.15	vst	2.06	st	2.04	vst	111	2.90	st	2.86	vst	
220	1.86	m	1.78	т	1.77	т	200	2,51	m	2.49	w	
310	1.66	mw	1.60	vw	1.58	vw	211	2.045	w	2.01 ⁵	st	
222			1.46	vw			220	1.77	m	1.75	st	
321	1.41	mw	1.35	w	1.34	m^+	311	1.51	m	1.49	m	
400	1.32	w	1.26	w	1.25	m	222	1.45	w	1.42	m	

according to 2 AgAuS \rightarrow Ag₂S + 2Au + $\frac{1}{2}$ S¹₂. In sealed vessels (DTA ampoules) the phase transition is reversible; on cooling from about 450°C the phase transition occurred at 298°C; no peak from Ag₂S was observed. The heat of transition was estimated to be 3.5 kcal/mole.

Acknowledgments

The authors wish to thank Prof. Jellinek and Prof. Haas for reading the manuscript. This investigation was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1. P. RAHLFS, Z. phys. Chem. Abt. B 31, 157 (1936).
- 2. F. KRACEK, Trans Amer. Geophys. Union 27, 364 (1964).

- 3. B. H. TAVERNIER, J. VERVECKEN, P. MESSIEN, AND M. BAIWIR, Z. Anorg. Allg. Chem. 356, 77 (1967).
- 4. A. J. FRUEH, Amer. Mineral. 46, 654 (1961).
- 5. H. HIRSCH, A. DE CUGNAC, M. C. GADET, AND J. POUR-ADIER, C.R. Acad. Sci. Paris, Ser. B 263, 1327 (1966).
- 6. B. H. TAVERNIER, Z. Anorg. Allg. Chem. 343, 323 (1966).
- 7. R. B. GRAF, Amer. Mineral. 53, 496 (1968).
- 8. R. M. THOMSON, Amer. Mineral. 33, 209 (1948).
- 9. L. J. CABRI, Econ. Geol. 60, 1569 (1965).
- 10. A. J. FRUEH, Amer. Mineral. 44, 693 (1959).
- 11. P. MESSIEN AND M. BAIWIR, Bull. Soc. Roy. Sci. Liege 35, 234 (1966).
- P. MESSIEN, M. BAIWIR, AND B. TAVERNIER, Bull. Soc. Roy. Sci. Liege 35, 727 (1966).
- O. KUBASCHEWSKI, E. L. EVANS, AND C. B. ALCOCK, "Metallurgical Thermochemistry," 4th ed., p. 366, Pergamon Press, Oxford, 1967.
- 14. M. D. BANUS, Science 147, 732 (1965).
- 15. Nat. Bur. Stand. Circ. 539, 10, (1960).